| 
 | Path: news.nzbot.com!not-for-mail From: "Paul Beekhuizen" <news@pibb.demon.nl>
 Newsgroups: alt.gambling
 Subject: Re: Gambler's Ruin Problem
 Date: Thu, 25 Nov 2004 21:51:49 +0100
 Organization: Posted via Supernews, http://www.supernews.com
 Message-ID: <10qchf8b5fu1g6a@corp.supernews.com>
 References: <41A50D39.9050103@thegrid.net>
 X-Priority: 3
 X-MSMail-Priority: Normal
 X-Newsreader: Microsoft Outlook Express 6.00.2741.2600
 X-MimeOLE: Produced By Microsoft MimeOLE V6.00.2742.200
 X-Complaints-To: abuse@supernews.com
 Lines: 87
 Xref: news.nzbot.com alt.gambling:763
 
 
 "Patrick D. Rockwell" <prockwell@thegrid.net> schreef in bericht
 news:41A50D39.9050103@thegrid.net...
 >   Here is a statement of the Gambler's Ruin Problem.
 >
 > Let A be your amount of money, and B be how much money the house has.
 >
 > Let p be your probability of winning 1 game, and q=1-p.
 >
 > If p=q=0.5, then Pr(of you going broke)=(B/(A+B))
 >
 > If p<>p and p<>0 and q<>0, then Pr(of you going
 > broke)=(1-(q/p)^B)/(1-(q/p)^(A+B))
 >
 
 I don't think this formula is correct. Try A=B=1, then
 
 (1-(q/p)^B)/(1-(q/p)^(A+B)) = [1-(1-p)/p]  /  [1-((1-p)/p)^2]
 =    [-1/p] / [ 1 - (1-2p+p^2)/p^2 ]
 =    [ -1/p ] / [ (p^2 -1 + 2p -p^2)/p^2 ]
 =    [ -1 / p ] / [ (-1 + 2p ) /p^2]
 =    -p /  (1-2p ),
 
 while obviously P(you go broke) = P( you lose the first and only game) =
 1-p. Moreover, if 0<p<1/2, then -p /  (1-2p )<0.
 
 
 > If A=0 and B>0 then Pr(of you going broke)=1
 >
 > BUT...
 >
 > if A>0 and B>0 and p=1, doesn't the formula fail? If p=1, then
 > Pr=(1-(q/p)^B)/(1-(q/p)^(A+B))=1
 > which implies that if your chances of winning 1 game are 100%, then the
 > formula predicts that
 > Pr(of you going broke)=100%.
 >
 > I'm thinking of writing a program for Gambler's Ruin, but I'm wondering,
 > how would you
 > define the value of Pr for
 >
 > p=1, A=0, B=0 or p=0, A=0, B=0, or p=0.5, A=0, B=0?
 >
 
 This is just a matter of definition. You'd best exclude these cases.
 
 > I ask because in the above cases, A=0 which means you're broke,
 > but B=0 so, the house is broke too. Would that mean that
 > Pr=1 because your broke at the start regardless of what
 > the house has?
 
 Yes, but also P(you go broke) = P (house goes broke) =1. Normally we have
 that P(you go broke) + P(house goes broke) =1, because P(you go broke and
 house goes broke) =0. However, in this special case, it holds that P(you go
 broke and house goes broke) =0, simply because you and the house ARE both
 initially broke.
 
 >
 > How about this one.
 >
 > p=1, A=10, B=0?
 >
 >
 
 P(you go broke)=0, P(house goes broke)=1, because the house IS already
 broke.
 
 Although you could also say that P(house goes broke) = 0, because the house
 is broke and therefore it cannot GO broke anymore. It just depends on how
 you interpret "going broke."
 
 Kind regards,
 Paul Beekhuizen
 
 >
 >
 >
 >
 > --
 > Patrick D. Rockwell
 > prockwell@thegrid.net
 > hnhc85a@prodigy.net
 > patri48975@aol.com
 >
 >
 
 
 
 | 
 
 |