| 
 | Path: news.nzbot.com!not-for-mail From: "AngleWyrm" <no_spam_anglewyrm@hotmail.com>
 Newsgroups: alt.gambling
 References: <41A50D39.9050103@thegrid.net> <8Zppd.150351$R05.111548@attbi_s53>
 Subject: Re: Gambler's Ruin Problem
 Lines: 16
 X-Priority: 3
 X-MSMail-Priority: Normal
 X-Newsreader: Microsoft Outlook Express 6.00.2800.1158
 X-MimeOLE: Produced By Microsoft MimeOLE V6.00.2800.1165
 Message-ID: <taqpd.391415$wV.320034@attbi_s54>
 NNTP-Posting-Host: 24.18.159.139
 X-Complaints-To: abuse@comcast.net
 X-Trace: attbi_s54 1101410073 24.18.159.139 (Thu, 25 Nov 2004 19:14:33 GMT)
 NNTP-Posting-Date: Thu, 25 Nov 2004 19:14:33 GMT
 Organization: Comcast Online
 Date: Thu, 25 Nov 2004 19:14:33 GMT
 Xref: news.nzbot.com alt.gambling:762
 
 "AngleWyrm" <no_spam_anglewyrm@hotmail.com> wrote in message
 news:8Zppd.150351$R05.111548@attbi_s53...
 >
 > If we accept that infinity raised to a real power is still infinity, then
 > we can remove the power expressions to get:
 > (1 - (+inf)) / (1 - (+inf) )
 >
 
 P.S.  A trained person might be able to calculate the 'density' of the
 infinity, according to how much money the two players have.
 
 Also, on the matter of going from a starting position of Broke to an end
 position of Broke is not movement; a broke player has nothing to lose. So
 it seems to me that a broke player cannot "go broke".
 
 
 
 | 
 
 |