alt.gamblingPrev. Next
Re: Gambler's Ruin Problem Comcast Online
AngleWyrm (no_spam_anglewyrm@hotmail.com) 2004/11/25 12:14

Path: news.nzbot.com!not-for-mail
From: "AngleWyrm" <no_spam_anglewyrm@hotmail.com>
Newsgroups: alt.gambling
References: <41A50D39.9050103@thegrid.net> <8Zppd.150351$R05.111548@attbi_s53>
Subject: Re: Gambler's Ruin Problem
Lines: 16
X-Priority: 3
X-MSMail-Priority: Normal
X-Newsreader: Microsoft Outlook Express 6.00.2800.1158
X-MimeOLE: Produced By Microsoft MimeOLE V6.00.2800.1165
Message-ID: <taqpd.391415$wV.320034@attbi_s54>
NNTP-Posting-Host: 24.18.159.139
X-Complaints-To: abuse@comcast.net
X-Trace: attbi_s54 1101410073 24.18.159.139 (Thu, 25 Nov 2004 19:14:33 GMT)
NNTP-Posting-Date: Thu, 25 Nov 2004 19:14:33 GMT
Organization: Comcast Online
Date: Thu, 25 Nov 2004 19:14:33 GMT
Xref: news.nzbot.com alt.gambling:762

"AngleWyrm" <no_spam_anglewyrm@hotmail.com> wrote in message
news:8Zppd.150351$R05.111548@attbi_s53...
>
> If we accept that infinity raised to a real power is still infinity, then
> we can remove the power expressions to get:
> (1 - (+inf)) / (1 - (+inf) )
>

P.S.  A trained person might be able to calculate the 'density' of the
infinity, according to how much money the two players have.

Also, on the matter of going from a starting position of Broke to an end
position of Broke is not movement; a broke player has nothing to lose. So
it seems to me that a broke player cannot "go broke".



Follow-ups:123456
Next Prev. Article List         Favorite