alt.gamblingPrev. Next
Gambler's Ruin Problem EarthLink Inc. -- http:/ ..
Patrick D. Rockwell (prockwell@thegrid.net) 2004/11/24 15:40

Path: news.nzbot.com!not-for-mail
Message-ID: <41A50D39.9050103@thegrid.net>
From: "Patrick D. Rockwell" <prockwell@thegrid.net>
User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:0.9.4.1) Gecko/20020314 Netscape6/6.2.2
X-Accept-Language: en-us
MIME-Version: 1.0
Newsgroups: alt.gambling
Subject: Gambler's Ruin Problem
Content-Type: text/plain; charset=us-ascii; format=flowed
Content-Transfer-Encoding: 7bit
Lines: 48
Date: Wed, 24 Nov 2004 22:40:25 GMT
NNTP-Posting-Host: 209.179.130.65
X-Complaints-To: abuse@earthlink.net
X-Trace: newsread1.news.pas.earthlink.net 1101336025 209.179.130.65 (Wed, 24 Nov 2004 14:40:25 PST)
NNTP-Posting-Date: Wed, 24 Nov 2004 14:40:25 PST
Organization: EarthLink Inc. -- http://www.EarthLink.net
Xref: news.nzbot.com alt.gambling:757

  Here is a statement of the Gambler's Ruin Problem.

Let A be your amount of money, and B be how much money the house has.

Let p be your probability of winning 1 game, and q=1-p.

If p=q=0.5, then Pr(of you going broke)=(B/(A+B))

If p<>p and p<>0 and q<>0, then Pr(of you going
broke)=(1-(q/p)^B)/(1-(q/p)^(A+B))

If A=0 and B>0 then Pr(of you going broke)=1

BUT...

if A>0 and B>0 and p=1, doesn't the formula fail? If p=1, then
Pr=(1-(q/p)^B)/(1-(q/p)^(A+B))=1
which implies that if your chances of winning 1 game are 100%, then the
formula predicts that
Pr(of you going broke)=100%.

I'm thinking of writing a program for Gambler's Ruin, but I'm wondering,
how would you
define the value of Pr for

p=1, A=0, B=0 or p=0, A=0, B=0, or p=0.5, A=0, B=0?

I ask because in the above cases, A=0 which means you're broke,
but B=0 so, the house is broke too. Would that mean that
Pr=1 because your broke at the start regardless of what
the house has?

How about this one.

p=1, A=10, B=0?






--
Patrick D. Rockwell
prockwell@thegrid.net
hnhc85a@prodigy.net
patri48975@aol.com



Follow-ups:123456
Next Prev. Article List         Favorite